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Abstract: Food webs are a useful abstraction and representation of the feeding links between species in a community
and are used to infer many ecosystem level processes. However, the different theories, mechanisms, and criteria that
underpin how a food web is defined and, ultimately, constructed means that not all food webs are representing the same
ecological process. Here we present a synthesis of the different assumptions, scales and mechanisms that are used to
define different ecological networks ranging from metawebs (an inventory of all potential interactions) to fully realised
networks (interactions that occur within a given community over a certain timescale). Illuminating the assumptions,
scales, and mechanisms of network inference allows a formal categorisation of how to use networks to answer key
ecological and conservation questions and defines guidelines to prevent unintentional misuse or misinterpretation.
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At the heart of modern biodiversity science are a set of concepts and theories about biodiversity, stability1

and function. These relate to the abundance, distribution and services that biodiversity provides, and how2

biodiversity – as an interconnected set of species – responds to multiple stressors. The interaction between3

species (or individuals) is one of the fundamental building blocks of ecological communities provide a powerful4

abstraction that can help quantify, conceptualise, and understand biodiversity dynamics, and ultimately,5

one hopes, make prediction, mitigate change and manage services [ref]. Such network representations of6

biodiversity (including within species diversity) are increasingly argued to be an asset to predictive ecology,7

climate change mitigation and resource management. Here, it is argued that characterising biodiversity in8

a network will allow deeper capacity to understand and predict the abundance, distribution, dynamics and9

services provided by multiple species facing multiple stressors.10

However, the way that a network is constructed (encoded) defines an epistemology of the network concept11

which, we argue, can influence the resulting observations and conclusions about pattern and mechanisms12

that are made (Brimacombe et al., 2023; Proulx et al., 2005). This process of constructing networks has two13

major pillars: the data and theory, the latter representing an expression of mechanism and process giving14

rise to patterns that emerge from collating interactions among species. Each of these pillars carries with it15

a set of practical, semantic and conceptual constraints that not only influence progress in making network16

ecology more valuable and potentially predictive, but help define the spatial, temporal and evolutionary scale17

of assumptions we make and predictions we might generate from the networks.18

With respect to data, it is extremely challenging to actually record species interactions in the field (Jordano,19

2016a, 2016b). Despite notable herculean efforts (Woodward? Benguela?), actual coverage of ‘real world’20

interaction data remains sparse (Poisot et al., 2021). Against this practical challenge, there is additionally21

high variance in the terminology we use to define networks. Finally, the mathematical and statistical tools22

we use to construct, conceptualise, analyse and predict with these networks are also highly variable.23

1. what are the underlying assumptions about nodes, edges, scale and process that are made when we24

attempt to delimit and describe a food webs;25

2. are there families of commonly used tools that map onto assumptions about scales and processes;26

The provision of this detail ultimately leads to a set of insights and conclusions about whether, when and27

under what conditions network representations of biodiversity can contribute to the advancement of ecological28

theory and generate value in predictive ecology. Specifically, we finish this perspective with an overview of29

fundamental questions in ecology that we think can benefit from network thinking and a proposal that such30

thinking can accelerate our capacity to predict the impact of multiple stressors on biodiverse communities.31
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1 Setting the Scene: The Not So Basics of Nodes and Edges32

Defining a food web seems simple; it is the representation of the interactions (edges) between species (nodes),33

however the definition of ‘edges’ and ‘nodes’, as well as the scale at which they are aggregated can take34

many forms (Poisot, Stouffer, et al., 2016). Networks can be constructed at the population (the links among35

individuals), community (the links between species), or metacommunity (fluxes between locations) level.36

Even if one were to limit their scope to thinking of interaction networks only in terms of food webs at the37

community-level there are still many ways to define the various components of the network Panel A of 1,38

one needs to understand the different intentions/assumptions that are made when a food web is constructed.39

Although the main intention of a food web is to capture and represent the feeding links between species there40

are many ways to define the nodes (e.g., species or taxonomic group), edges (e.g., potential or realised feeding41

links), the magnitude of the edges (e.g., binary vs probabilistic), and even how the network itself is delimited42

(does it represent an aggregation of interactions over time?).43

[Figure 1 about here.]44

1.0.1 How do we define a node?45

Although this may seem an elementary question in the context of food webs — a node should represent a46

(taxonomic) species, the reality is that nodes can often represent an aggregation of different species - so called47

‘trophic species’ or segregation of species by life stages. Representing nodes as non-taxonomic species can be48

useful in certain contexts (Williams & Martinez, 2000) and in cases where the adult and larval stages of a49

species have different diets it may make ecological sense (Clegg et al., 2018) meaning that it is not uncommon50

that networks often have nodes that have different definitions of a ‘species’ e.g. consisting of both taxonomic51

and trophic species. Practical implications of how we are aggregating the nodes is that the resolution may52

not always be ‘pixel perfect’ i.e., we may be unable to assess the co-extinction risk of a species pair, however53

there is value in having nodes that represent an aggregation of species, as these convey a much more general54

overview of how the links are distributed within the community.55

1.0.2 What is meant by an edge?56

At its core links within food webs can be thought of as a representation of either feeding links between57

species - be that realised (Pringle, 2020) or potential (Dunne, 2006), or representative of fluxes within the58

community/system e.., energy transfer or material flow (Lindeman, 1942). How we specify links will influence59

the resulting structure of the network - and the inferences we will make thereof. For example taking a food60

web that consists of links representing all potential feeding links for a community (i.e., a metaweb) will be61
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meaningless if you are interested in understanding the flow of energy through the system as the links within62

a metaweb do not represent environmental/energetic constraints. In addition to the various ways of defining63

the links between species pairs there are also a myriad of ways in which the links themselves can be quantified.64

Links between species are often treated as being present or absent (i.e., binary) but it is also possible to65

use probabilities (which quantifies how likely an interaction is to occur, Poisot, Cirtwill, et al., 2016) or66

continuous measurements (which quantifies the strength of of an interaction, Berlow et al., 2004). Moving67

away from a purely binary way of representing allows us to quantify a level of (un)certainty of our knowledge68

of interactions (i.e., moving from being able to ask if are they occurring to quantifying how likely they are69

to occur) does add an additional level of ‘complexity’ to the construction and interpretation of networks, but70

ultimately it will allow us to capture more information at different scales (Banville et al., 2024).71

1.0.3 Putting the parts together; what does it mean?72

The ingredients one uses to construct networks from nodes and edges generates a unique representation of the73

mechanisms (see Section 2) that allow inference and reasoning about the structure, aspects of dynamics (e.g.,74

stability), and potentially the function of communities (e.g., flux). It is thus important to keep in mind that75

different networks are going to be representing different processes and that can only be used for inference of76

some but not all aspects of the community at large. Here it may be meaningful to contextualise the different77

‘types’ of food webs within the larger research programmes (or even practical needs) that have been driving78

the construction of them.79

Before thinking about the ways in which we can predict networks it is perhaps meaningful to take a step80

back and think about the different criteria that must be met in order for an interaction to be able to occur81

between two species, specifically thinking of this in terms of distinguishing between the feasibility versus82

realisation of an interaction and how these are determined (and defined by) different ‘rules’/mechanisms. If83

we look at this feasibility-reality continuum (Figure 2) it is clear how the different predictive approaches84

(methods) tend to fall within one of the broader categories identified (distinguished) in the triangle. This is85

not to say that this shortcoming should be viewed as a ‘bug’ but rather a ‘feature’ of the field as it allows one86

to engage with, as well as construct networks at different scales, which is particularly valuable if one takes87

into consideration the considerable ‘data cost’ of predicting well resolved, realised networks in comparison to88

constructing high-level metawebs. However, it is important that there is an awareness and acknowledgement89

of where within this feasibility-reality one is working at and how this will impact and limit the contexts in90

which the resulting network can be used and applied within.91

3



2 From Nodes and Edges to Scales and Processes92

Armed with these basics, it is now possible to review the scales and assumptions that are made by a wide93

range of tools to assist in constructing networks against poor data with the hope of capturing important94

processes that underpin accurate prediction. Our thesis centres on a four-tier conceptualization of networks:95

co-occurrence, feasibility, mass effects and energetics. In the following sections we review each of these and96

then provide a synthesis among them.97

2.1 Understanding the drivers of species interactions98

Important goal here is to introduce the idea that there are multiple facets as to what determines the interaction99

between species and that there is some sort of ‘scale of organisation’ Figure 2. We can then introduce these100

different scales/theories and I think some key points to highlights are the features, limits, and descriptions101

of these different scales (by that I mean what rules them, what finds them, and what binds them - sorry not102

sorry). I think it is also worth either in this section or in the one where we talk about model families to103

discuss the idea of ‘moving between’ different levels - e.g. downsampling but also feasibility - can we actually104

do that? Another interesting discussion here (or maybe actually something that can make its way into the105

concluding remarks) is thinking about what determines interactions vs what determines structure…106

• These different theories are shown in Figure 2 and we can see there is some element of scaling (species107

- population - individual)108

[Figure 2 about here.]109

1. (Co)occurrence110

Although the outright assumption that because two species are co-occurring it must mean that they are111

interacting is inherently flawed (Blanchet et al., 2020), it is of course impossible for two species to interact (at112

least in terms of feeding links) if they are not co-occurring in time and space. Hence it is of course important113

to take into consideration the co-occurrence of both the resource and the consumer. An example of this114

would be the work from Dansereau et al. (2023), where a metaweb (feasibility network) is downsampled into115

smaller realisations based on better data/knowledge as to which species are occurring at a specific location116

- however arguably these are still firmly in the space of feasible interactions for the specific location but are117

approaching a better approximation of ‘reality’…118

2. Feasibility119

This is based on the idea of forbidden links introduced by Jordano (2016b), specifically that there must120

4



be some degree of trait complementarity that allows a predator to chase, capture, kill, and consume, its121

prey. This is probably the level that the idea of a metaweb (Dunne, 2006) is most applicable to. Within122

the network prediction ‘field’ this is perhaps the most developed space. Predictive models run the gamut123

including mechanistic models (Morales-Castilla et al., 2015), binary classifiers (Pichler et al., 2020), and124

graph embedding (Strydom et al., 2023) and use either traits (or phylogeny as a proxy for the conservation125

thereof) as a means to ‘evaluate’ if an interaction is possible between two species (again not the likelihood126

of it happening but the likelihood of its feasibility). It is probably worth having a brief interlude here to be127

really clear that just because an interaction is probabilistic it does not make it weighted (at least not in the128

traditional sense of weighted interactions, e.g., J. T. Wootton & Emmerson (2005)) - it is still ‘binary’, it129

just happens to be defined by a binomial distribution (sensu Banville et al. (2024)).130

3. Mass effect131

Not sure if there are models that ‘only’ consider abundance (barring the neutral model) and that it is rather132

more of a building block in some of the models that are more relevant to the next steps. Maybe there is an133

argument that this ‘rule’ is ‘irrelevant’ in the context of how I am presenting network prediction and more134

so a data parameter one needs… maybe…135

This is probably the point where we start to shift from a potential (presence/absence) way of defining136

interactions and start moving into the ‘qualitative’/weighted interaction space - we are not ‘determining’ if137

the interaction is feasible but rather making an assumption on prey selection based on the species’ likelihood138

of ‘meeting’, although Banville et al. (2024) presents a compelling case that this could still be considered139

something that falls under the ‘feasibility’ and not ‘reality’ side of the spectrum… (well at least past Tanya140

seemed to think so)141

4. Energetics142

This is where we begin to move into the foraging ecology space - specifically consumption rate and how that143

pertains to energy acquisition i.e., optimal foraging theory. In the loosest sense I think this is the ‘prey choice’144

space - but specifically in the context of how prey choice as informed by energetic cost (not just purely based145

on e.g., the most abundant species). If we think about ways that people have approached this there are the146

diet models of (Beckerman et al., 2006) and (Petchey et al., 2008) as well as the ‘trait’ framework developed147

by K. L. Wootton et al. (2023) that moves the ‘energy’ into different ‘modules’ related to the process of148

the consumer acquiring energy from the resource (however there is a disregard for the ‘Rule 1’ requirement149

of forbidden links, again not bad just pointing it out). The idea of the consumer search space developed150

by Pawar et al. (2012) is also an interesting consideration. Finally the environment itself is also imposing151
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energy costs on the predator. Basically the ideas presented in Cherif et al. (2024), which is essentially a152

take on movement ecology? What it boils down to is being able to quantify the cost of movement i.e., the153

physical constraints that the environment imposes on a species… Maybe we can also think of it more in terms154

of metabolic rate?155

3 Network prediction is scale dependent156

The way in which we predict a network is driven by the underlying theory Figure 2 which con-157

strains or informs the assumptions we make (this of course also has implications with regards158

to how the resulting network is defined (Box 1)). We can then spend a moment introducing159

the different model families Table 1. I think a clear messaging here might be that models can160

share a similar underlying theory but use different methods to get there (e.g., using ecological161

rules (explicit), ecological expectations (pattern finders), or mathematical models (assumptions162

on the structure of the matrix - maybe even network)). Importantly different models will also163

have different ‘limits’ to them - this is probably a product of both where they are found within164

the ‘theory space’ Figure 2 as well as the definition of the network (Box 1) space. Should we165

also maybe revisit the idea of interaction vs structure predictors… I think it is still a point that166

is worth raising but no longer the framework on which we hang the different model families…167

• The way in which we predict networks is ‘constrained’/informed by the different theories shown in168

Figure 2169

• Need to be aware of this and be aware how/what we can use the networks - Petchey dilemma170

• The ‘scale’ that a network is constructed should be a determinant of what we can learn about a system171

e.g., can’t use a feasibility network to learn something about energy flows. This is because they are172

capturing different processes173

• Link the ‘model families’ to the different scales/theories174

• Data…175

As discussed in Box 1 there are many ways to define a food web, meaning that there are equally as many176

reasons one might be interested in predicting a food web. However we may think of two primary drivers177

for wanting to predict networks (Panel B Figure 1), namely an interest in generating a set of ecologically178

plausible networks (i.e., being able to describe networks using a model) or being able to recover (predict)179

location specific, ‘realised’, interactions for a specific species community (i.e., being able to predict/infer the180
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interactions between species). Of course these two categories are not distinct, mutually exclusive, groups but181

can rather be viewed as operating on a continuum ranging from a need for generality (i.e., creating a network182

that, when taken in aggregate, the distribution of links (interactions) between nodes (species) are ecologically183

plausible) to a need for specificity (i.e., local-level predictions between specific species pairs). Although the184

ability to predict ‘real-world’ interactions (and the resulting food webs) can have more intuitive ‘real world’185

applications e.g., being able to ‘recover’ food webs that have since gone extinct (Dunne et al., 2008; Yeakel186

et al., 2014), using pairwise interactions to understand species distributions (Pollock et al., 2014) or even187

co-extinction risk (Dunn et al., 2009), a more structural approach to network construction affords one an188

opportunity to interrogate some of the more high-level mechanisms that are structuring networks (Box 1).189

It is perhaps more important that when one is talking about ‘why’ they want to predict networks to articulate190

exactly what anatomical part of the food web we are interested in scrutinising.191

3.1 How do we predict food webs?192

Selecting a model for the task of network prediction should come down to two things; what aspect of a193

food web one is interested in predicting, and what data are available, necessary, and sufficient. As shown194

in panel B of Figure 1 the interest in a network is (usually) at either the ‘structural’ or ‘interaction’ level195

and the development of models for the task of network prediction often focus on high fidelity (performance)196

at one of these scales. With this in mind it is beneficial to think of the different model families relative197

to these two different goals; here we refer to models that are used to predict the structure of a network as198

topology generators and models developed to infer the interactions for a given species pool as interaction199

predictors. It is meaningful to make this distinction because although it is possible to construct a food200

web given using an interaction predictor the models themselves lack any sort of parametrisation of the201

network structure and so the resulting network is a poor reflection of the actual network structure (Caron202

et al., 2024). This is primarily because interaction predictors are models that evaluate the feasibility of203

an interaction between species pairs and not in the context of feasibility at the community level. Models204

themselves are a reflection of the different goals and intentions of the research program from which they are205

developed and are often ‘described’ by a specific mechanism that will determine the resulting structure or206

interactions (Box 1). Models such as the niche (Williams & Martinez, 2000) or cascade (Cohen et al., 1990)207

were developed with the intent of being used to understand the structural aspects of food webs, specifically208

how links are distributed amongst species in the community, whereas bayesian (Cirtwill et al., 2019) or trait209

hierarchy (Shaw et al., 2024) models have been developed on the basis that the traits of a species are the210

underlying mechanism in determining the feasibility of interactions (i.e., species 𝑎 has the capacity to eat211
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species 𝑏). Along with predicting different anatomical parts of a food web the different models have varying212

degrees of data that are needed to ‘parametrise’ the network. Once these two limitations are assessed and213

addressed it is then possible to select the model (or model family) that will best be able to capture food214

web feature that the researcher is most interested in (see Box 2 - Assessing model outputs). It is thus clear215

that (realistically) there will probably never be a ‘best fit’ tool that is able to construct a food web that216

will span the entire range of needs, and rather the responsibility lies with the researcher to be aware of not217

only the underlying philosophy of the specific toolset (as this could have knock-on effects when using those218

networks for downstream analyses/simulations; pers. comms. Beckerman, 2024), but also how well the tool219

can retrieve the specific network or interaction properties that is of interest.220

In order for a model to formalise a ‘complete’ food web it is necessary to formalise two aspects221

of the network, ‘who eats whom’ (to determine the links between nodes) as well as the structure222

of the network (to limit the distribution of links), however most models are inclined to focus on223

one of the two aspects panel B of 1.224

Crucially most topology generators lack some key data on the interaction between species (this225

can be because of how the model itself defines species or the way in which links are assigned in226

the network) and interaction predictors lack some sort of parametrisation of network structure227

(just because two species can interact it does not mean that they will, Poisot et al., 2015).228

What is the purpose of generating a network? Is it an element of a bigger question we are asking,229

e.g., I want to generate a series of networks to do some extinction simulations/bioenergetic stuff230

OR are we looking for a ‘final product’ network that is relevant to a specific location? (this can231

still be broad in geographic scope).232

3.2 Categorizing Model Families233

NEED A TRANSITION PARAGRAPH234

As there are many food web models to choose from it is perhaps useful to think about the models in terms of235

model families, a summary of these families is presented in Table 1 highlights the differences and similarities236

of the philosophies and assumptions that determine a network. A more extensive overview of the different237

models that fall with in the different model families can be found in SuppMat 1 and for a more detailed238

breakdown of the different ‘traits’ of the model families refer to SuppMat 2.239
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Table 1: A summary of the different families of tools that can be used to generate food webs. Here ‘type’
leans on the ideas from Momal et al. (2020) in terms of reconstructing networks from other known (observed)
interactions and inferring interactions without relying on observed interactions.

Model family Assumption Theory Type Key reference

null Links are randomly

distributed within a network

network

inference

neutral Network structure is random,

but species abundance

determines links between

nodes

abundance network

inference

Canard et al.

(2012)

resource Networks are interval, species

can be ordered on a ‘niche

axis’

network

inference

Williams &

Martinez (2008)

generative Networks are determined by

their structural features

network

reconstruction

energetic Interactions are determined by

energetic costs

abundance +

energy

network

reconstruction

graph embedding Interactions can be predicted

from the latent traits of

networks

feasibility network

reconstruction

Strydom et al.

(2023)

trait matching Interactions can be inferred by

a mechanistic

framework/relationships

feasibility network

reconstruction

Morales-

Castilla et al.

(2015)

binary classifiers Interactions can be predicted

by learning the relationship

between interactions and

ecologically relevant predictors

feasibility network

reconstruction

Pichler et al.

(2020)

expert knowledge ‘Boots on the ground’

ecological knowledge and

observations

feasibility network

reconstruction

9



Model family Assumption Theory Type Key reference

data scavenging Webscraping to create

networks from online

databases

network

reconstruction

Poisot, Gravel,

et al. (2016) (f

you squint?)

co-occurrence co-occurrence patterns arise

from interactions so we can

use these patterns to reverse

engineer the interactions

co-occurrence network

inference

4 Making Progress with Networks240

In this section I want to highlight that we don’t actually have any clear guidelines as to how we can ‘use’241

networks - which probably stems from both the fact that when I am talking about a network and when242

someone else is talking about a network we may actually be talking about two very different conceptualisations243

of ‘a network’ (this should actually be a selling point in the intro - may have just found my raison d’etre) as244

well as that a lot of the ideas that we have about networks are not really tied to any sort of tangible function245

(i.e. Tim’s GeoBon ms thing-y). However we can maybe at least try to present some guidelines - but I think246

specifically within the sort of Petchy dilemma space and clearly tied to the ideas we discuss in the ms. This247

includes: understanding the limits of how a network is defined and how the underlying theory impacts the use248

as well as data?? IDK we need to shoehorn data in here somehow… We can also use this as a gap identifying249

space and I think the framing can still rest under the limits concept particularly time, space, and boundaries250

- which will all probably fall under some aspect of biological scale… We can also raise the idea of trust - as in251

which methods have more support/trust than others. Also what even a ‘real’ network entails (and this links252

again back to Tim’s stuff) as well as a subtle jab at Pringles notion that the most critical issue in the world253

of food webs is being able to identify every. single. link. even though there is no real discussion as to what254

is an ‘opportunistic’ link vs a link that represents a sustainable energy source for a population (or would it255

be an individual)…256

We need to be aware of the parameter space that is possible given a specific definition of a network and257

operate within those parameters.258
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5 Concluding remarks259

I think the idea of time and how we are aggregating networks across that should be a prominent feature260

here…261

• In certain situations structure is ‘enough’ but there may be use cases where we are really interested in262

the node-level interactions i.e., species identity is a thing we care about and need to be able to retrieve263

specific interactions at specific nodes correctly.264

• Why do interaction models do so badly at predicting structure? Nuance of metaweb vs realisation but265

also time? At the core of it interaction models are trained on existing interaction data; this is data266

that are most likely closer to a metaweb than a local realisation even if they are being inventoried at a267

small scale…268

– We can briefly shoehorn downsampling here maybe??269

• It will be interesting to bring up the idea that if a model is missing a specific pairwise link but doing270

well overall then when does it matter?271

– The fact that some people are concerned about the taxonomic resolution and cascading effects272

those might have on our understanding of network structure (Pringle, 2020; Pringle & Hutchinson,273

2020), but that puts us in a place where we are at risk of losing our ability to distinguish the wood274

from the tree - are we not (at least at times) concerned more with understanding ecosystem level275

processes than with needing to understand things perfectly at the species level.276

– I don’t think these ‘rare’/nuanced links (e.g. carnivorous hippos) are going to rock the boat when277

we think about networks at the structural level.278

“The resolution of food-web data is demonic because it can radically change network topology279

and associated biological inferences in ways that are unknowable in the absence of better data.” -280

Pringle & Hutchinson (2020) The counter to this is that structural models are often not working281

at the species level and thus the structure remains ‘unchanged’ when you increase the resolution282

- I don’t think that people are that concerned with the structure of real world networks barring283

connectance and since that scales with species richness anyway your final proportion will probably284

still remain the same…285

• I think a big take home will (hopefully) be how different approaches do better in different situations286

and so you as an end user need to take this into consideration and pick accordingly. I think Petchey287

et al. (2011) might have (and share) some thoughts on this. I feel like I need to look at Berlow et al.288
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(2008) but maybe not exactly in this context but vaguely adjacent.289

– I think this is sort of the crux of the argument presented in Brimacombe et al. (2024) as well.290

“we highlight an interesting paradox: the models with the best performance measures are not291

necessarily the models with the closest reconstructed network structure.” - Poisot (2023)292

• Do we need network models to predict interactions and interaction models to predict structure?293

– “Another argument for the joint prediction of networks and interactions is to reduce circularity294

and biases in the predictions. As an example, models like linear filtering generate probabilities of295

non-observed interactions existing, but do so based on measured network properties.” - Strydom296

et al. (2021)297

– Aligning (dove-tailing) with this the idea of ensemble modelling as presented by Becker et al.298

(2022)299

• Close out with a call to action that we have models that predict networks very well and models that300

predict interactions very well but nothing that is doing well at predicting both - this is where we should301

be focusing our attention when it comes to furthering model development…302

• Do we expect there to be differences when thinking about unipartite vs bipartite networks? Is there303

underlying ecology/theory that would assume that different mechanisms (and thus models) are relevant304

in these two ‘systems’.305

– The Terry & Lewis (2020) paper looks at some methods but is specifically looking at a bipartite306

world…307

do we bring this up? this could be a box… if we have the ‘finances’ for it… otherwise it should go to the308

outstanding questions fur sure309

“That being said, there is a compelling argument for the need to ‘combine’ these smaller functional units310

with larger spatial networks (Fortin et al., 2021) and that we should also start thinking about the interplay311

of time and space (Estay et al., 2023). Although deciding exactly what measure might actually be driving312

differences between local networks and the regional metaweb might not be that simple (Saravia et al., 2022).”313

5.1 Time314

We lack a clear agenda (and conceptualisation) as to what the appropriate level of aggregation is for a315

‘network’. Realistically most empirical networks are more aligned with ‘feasibility networks’ as opposed to316
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‘realised networks’ as they are often the result of some sort of aggregation of observations across time. This317

‘problem’ is two-fold. Firstly we need to think about how this affects any sort of development of theory318

that sits closer to the ‘realised network’ side of the spectrum - how often are we trying to ask and answer319

questions about realised networks using feasible networks? The second is that this lack of ‘direction’ as to320

how we should define a network is (actually) probably one of the biggest barriers that is affecting the use of321

networks in applied settings…322

Another time perspective question is when do we determine a link to be ‘real’… In the context of feasible323

networks this is perhaps clearer - all things equal would the predator be bale to consume the prey. However324

in the realised space there is also the question of the long term ‘energetic feasibility’ of an interaction - just325

because an interaction is possible in the now is it able to sustain a population in the long term. And what326

is the scale for that long term - are we thinking at the generational scale? Because ultimately when we are327

constructing a network we are aggregating not only across space but also across time.328

Glossary329

Term Definition

food web a representation of feeding links between species

topology generator a model that predicts a network based on

assumptions of structure, this network is species

agnostic in the sense that it does not necessarily

contain information at the node level

interaction predictor a model that predicts species interactions, these

interactions can be used to construct a network but

there are no a priori assumptions as that will

constrain the network structure

model A tool that can be used to construct food webs,

where the resulting network is a representation of a

real world network. Models typically only capture

specific elements of real world networks and are

intended to be used in specific settings
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Term Definition

model family A family of models that share an underlying

philosophy when it comes to the mapping,

pragmatism, and reduction of a network. Families

have the same underlying philosophies and

assumptions that determine the links between nodes

as well as how these may be encoded

metaweb A network that represents all the potential links

between species. Importantly these links will not

necessarily all be realised in a specific location for a

specific time

realised network A network that represents the links between species

that are occurring. These networks represent a very

localised network…

potential feeding link links that indicate that an interaction is ecologically

feasible but not realised per se (a metaweb would

contain potential feeding links)

realised feeding link links that indicate that the interaction is realised ‘in

the field’. (a realised network contains realised

feeding links)

confusion matrix captures the number of true positives (interaction

predicted as present when it is present), false

negatives (interaction predicted as absent when it is

present), false positives (interaction predicted as

present when it is absent), and true negatives

(interaction predicted as absent when it is absent)

Outstanding questions330

• non-consumptive effects331

• how do we define the spatial and temporal ‘boundaries’ of a network?332
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• how do we define a ‘real’ network?333
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Figure 1: The many ways in which a food web can be defined and described at the node, edge, and even
network level.
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Figure 2: TODO.
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